1,215 research outputs found

    Probing the evolution of the substructure frequency in galaxy clusters up to z~1

    Full text link
    Context. Galaxy clusters are the last and largest objects to form in the standard hierarchical structure formation scenario through merging of smaller systems. The substructure frequency in the past and present epoch provides excellent means for studying the underlying cosmological model. Aims. Using X-ray observations, we study the substructure frequency as a function of redshift by quantifying and comparing the fraction of dynamically young clusters at different redshifts up to z=1.08. We are especially interested in possible biases due to the inconsistent data quality of the low-z and high-z samples. Methods. Two well-studied morphology estimators, power ratio P3/P0 and center shift w, were used to quantify the dynamical state of 129 galaxy clusters, taking into account the different observational depth and noise levels of the observations. Results. Owing to the sensitivity of P3/P0 to Poisson noise, it is essential to use datasets with similar photon statistics when studying the P3/P0-z relation. We degraded the high-quality data of the low-redshift sample to the low data quality of the high-z observations and found a shallow positive slope that is, however, not significant, indicating a slightly larger fraction of dynamically young objects at higher redshift. The w-z relation shows no significant dependence on the data quality and gives a similar result. Conclusions. We find a similar trend for P3/P0 and w, namely a very mild increase of the disturbed cluster fraction with increasing redshifts. Within the significance limits, our findings are also consistent with no evolution.Comment: A&A in pres

    From the core to the outskirts: structure analysis of three massive galaxy clusters

    Full text link
    The hierarchical model of structure formation is a key prediction of the Lambda cold dark matter model, which can be tested by studying the large-scale environment and the substructure content of massive galaxy clusters. We present here a detailed analysis of the clusters RXCJ0225.9-4154, RXCJ0528.9-3927, and RXCJ2308.3-0211, as part of a sample of massive X-ray luminous clusters located at intermediate redshifts. We used a multiwavelength analysis, combining WFI photometric observations, VIMOS spectroscopy, and the X-ray surface brightness maps. We investigated the optical morphology of the clusters, we looked for significant counterparts in the residual X-ray emission, and we ran several tests to assess their dynamical state. We correlated the results to define various substructure features, to study their properties, and to quantify their influence on simple dynamical mass estimators. RXCJ0225 has a bimodal core, and two massive galaxy groups are located in its immediate surroundings; they are aligned in an elongated structure that is also detected in X-rays. RXCJ0528 is located in a poor environment; an X-ray centroid shift and the presence of two central BCGs provide mild evidence for a recent and active dynamical history. RXCJ2308 has complex central dynamics, and it is found at the core of a superstes-cluster. The complexity of the cluster's central dynamics reflects the richness of its large-scale environment: RXCJ0225 and RXCJ2308 present a mass fraction in substructures larger than the typical 0.05-0.15, whereas the isolated cluster RXCJ0528 does not have any major substructures within its virial radius. The largest substructures are found in the cluster outskirts. The optical morphology of the clusters correlates with the orientation of their BCG, and with the position of the main axes of accretion

    The ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) I. Newly identified X-ray luminous clusters at z>=0.2

    Full text link
    We report 19 intermediate redshift clusters newly detected in the ROSAT All-Sky survey that are spectroscopically confirmed. They form a part of 911 objects in the REFLEX II cluster catalogue with a limiting flux of 1.8\times10^12 erg/s/cm2 in the 0.1-2.4 keV ROSAT band at redshift z >= 0.2. In addition we report three clusters from the REFLEX III supplementary catalogue, which contains objects below the REFLEX II flux limit but satisfies the redshift constraint above. These clusters are spectroscopically followed-up by our ESO NTT-EFOSC2 campaigns for the redshift measurement. We describe our observing and data reduction methods. We show how X-ray properties such as spectral hardness ratio and source extent can be used as important diagnostics in selecting galaxy cluster candidates. Physical properties of the clusters are subsequently calculated from the X-ray observations. This sample contains the high mass and intermediate-redshift galaxy clusters for astrophysical and cosmological applications.Comment: Astronomy and Astrophysics (in press

    The extended ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) IV. X-ray Luminosity Function and First Constraints on Cosmological Parameters

    Full text link
    The X-ray luminosity function is an important statistic of the census of galaxy clusters and an important means to probe the cosmological model of our Universe. Based on our recently completed REFLEX II cluster sample we construct the X-ray luminosity function of galaxy clusters for several redshift slices from z=0z = 0 to z=0.4z = 0.4 and discuss its implications. We find no significant signature of redshift evolution of the luminosity function in the redshift interval. We provide the results of fits of a parameterized Schechter function and extensions of it which provide a reasonable characterization of the data. Using a model for structure formation and galaxy cluster evolution we compare the observed X-ray luminosity function with predictions for different cosmological models. For the most interesting constraints for the cosmological parameters Ωm\Omega_m and σ8\sigma_8 we obatain Ωm0.27±0.03\Omega_m \sim 0.27 \pm 0.03 and σ80.80±0.03\sigma_8 \sim 0.80 \pm 0.03 based on the statistical uncertainty alone. Marginalizing over the most important uncertainties, the normalisation and slope of the LXML_X - M scaling relation, we find Ωm0.29±0.04\Omega_m \sim 0.29 \pm 0.04 and σ80.77±0.07\sigma_8 \sim 0.77 \pm 0.07 (1σ1\sigma confidence limits). We compare our results with those of the SZ-cluster survey provided by the PLANCK mission and we find very good agreement with the results using PLANCK clusters as cosmological probes, but we have some tension with PLANCK cosmological results from the microwave background anisotropies. We also make a comparison with other cluster surveys. We find good agreement with these previous results and show that the REFLEX II survey provides a significant reduction in the uncertainties compared to earlier measurements.Comment: Submitted for publication to Astronomy and Astrophysics, 15 pages, 17 figure

    RASS-SDSS Galaxy Cluster Survey. VII. On the Cluster Mass to Light ratio and the Halo Occupation Distribution

    Get PDF
    We explore the mass-to-light ratio in galaxy clusters and its relation to the cluster mass. We study the relations among the optical luminosity (LopL_{op}), the cluster mass (M200M_{200}) and the number of cluster galaxies within r200r_{200} (NgalN_{gal}) in a sample of 217 galaxy clusters with confirmed 3D overdensity. We correct for projection effects, by determining the galaxy surface number density profile in our cluster sample. This is best fitted by a cored King profile in low and intermediate mass systems. The core radius decreases with cluster mass, and, for the highest mass clusters, the profile is better represented by a generalized King profile or a cuspy Navarro, Frenk & White profile. We find a very tight proportionality between LopL_{op} and NgalN_{gal}, which, in turn, links the cluster mass-to-light ratio to the Halo Occupation Distribution NgalN_{gal} vs. M200M_{200}. After correcting for projection effects, the slope of the LopM200L_{op}-M_{200} and NgalM200N_{gal}-M_{200} relations is found to be 0.92±0.030.92\pm0.03, close, but still significantly less than unity. We show that the non-linearity of these relations cannot be explained by variations of the galaxy luminosity distributions and of the galaxy M/L with the cluster mass. We suggest that the nonlinear relation between number of galaxies and cluster mass reflects an underlying nonlinear relation between number of subhaloes and halo mass.Comment: 15 pages, 15 figures, accepted for publication in A&

    Studying the properties of galaxy cluster morphology estimators

    Full text link
    X-ray observations of galaxy clusters reveal a large range of morphologies with various degrees of disturbance, showing that the assumptions of hydrostatic equilibrium and spherical shape which are used to determine the cluster mass from X-ray data are not always satisfied. It is therefore important for the understanding of cluster properties as well as for cosmological applications to detect and quantify substructure in X-ray images of galaxy clusters. Two promising methods to do so are power ratios and center shifts. Since these estimators can be heavily affected by Poisson noise and X-ray background, we performed an extensive analysis of their statistical properties using a large sample of simulated X-ray observations of clusters from hydrodynamical simulations. We quantify the measurement bias and error in detail and give ranges where morphological analysis is feasible. A new, computationally fast method to correct for the Poisson bias and the X-ray background contribution in power ratio and center shift measurements is presented and tested for typical XMM-Newton observational data sets. We studied the morphology of 121 simulated cluster images and establish structure boundaries to divide samples into relaxed, mildly disturbed and disturbed clusters. In addition, we present a new morphology estimator - the peak of the 0.3-1 r500 P3/P0 profile to better identify merging clusters. The analysis methods were applied to a sample of 80 galaxy clusters observed with XMM-Newton. We give structure parameters (P3/P0 in r500, w and P3/P0_max) for all 80 observed clusters. Using our definition of the P3/P0 (w) substructure boundary, we find 41% (47%) of our observed clusters to be disturbed.Comment: Replaced to match version published in A&A, Eq. 1 correcte

    Detection of X-ray Clusters of Galaxies by Matching RASS Photons and SDSS Galaxies within GAVO

    Full text link
    A new method for a simultaneous search for clusters of galaxies in X-ray photon maps and optical galaxy maps is described. The merging of X-ray and optical data improves the source identification so that a large amount of telescope time for spectroscopic follow-up can be saved. The method appears thus ideally suited for the analysis of the recently proposed wide-angle X-ray missions like DUO and ROSITA. As a first application, clusters are extracted from the 3rd version of the ROSAT All-Sky Survey and the Early Date Release of the Sloan Digital Sky Survey (SDSS). The time-consuming computations are performed within the German Astrophysical Virtual Observatory (GAVO). On a test area of 140 square degrees, 75 X-ray clusters are detected down to an X-ray flux limit of 35×1013ergs1cm23-5\times 10^{-13} {\rm erg} {\rm s}^{-1} {\rm cm}^{-2} in the ROSAT energy band 0.1-2.4 keV. The clusters have redshifts z0.5z\le 0.5. The survey thus fills the gap between traditional large-area X-ray surveys and serendipitous X-ray cluster searches based on pointed observations, and has the potential to yield about 4,000 X-ray clusters after completion of SDSS.Comment: 19 pages, low-resolution figures, accepted for publication in Astronomy and Astrophysic

    An XMM-Newton study of the sub-structure in M87's halo

    Get PDF
    The high signal to noise and good point spread function of XMM have allowed the first detailed study of the interaction between the thermal and radio emitting plasma in the central regions of M87. We show that the X-ray emitting structure, previously seen by ROSAT, is thermal in nature and that the east and southwest extensions in M87's X-ray halo have a significantly lower temperature (kT= 1.5 keV) than the surrounding ambient medium (kT= 2.3 keV). There is little or no evidence for non-thermal emission with an upper limit on the contribution of a power law component of spectral index flatter than 3 being less than 1% of the flux in the region of the radio lobes.Comment: 6 pages, 8 color figures, to be published in A&A, number 36

    The Large Scale X-ray Emission from M87

    Get PDF
    We describe asymmetrical features in a long exposure X-ray map of M87 made with the ROSAT High Resolution Imager (HRI). A bright triangular region is marked by a linear `spur' along one edge. The structure of this spur suggests an interpretation of a tangential view of a shock front 18 kpc long. None of the brighter features are spatially coincident with radio or optical structures so we concur with earlier investigators that most of the emission arises from thermal processes.Comment: 6 pages latex, including 3 postscript figures. Uses psfig and LAMUPHYS (Springer) macro. To be published in 'The M87 Ringberg Workshop', September 1997, Springer Lecture Notes in Physics Series, Roeser and Meisenheimer, ed
    corecore